Pre-injector Upgrade Updates (15 Feb 2012 – 29 Feb 2012)

C.Y. Tan 29 Feb 2012

Feb	Mar	Apr	May	June	July	
LEBT Tes	ting					
RFQ test Corbun	dition cher Spect test	rometer	INSTALL?	????		

Latest

- Opened RFQ for inspection
- Connected Emittance probes to end of LEBT.
- Dipole magnet being measured at MTF for spectrometer.

Plans

- Survey RFQ rods
- Complete emittance measurements of present source.
- Install new source
- Install new vacuum tee in LEBT.
- High power condition buncher.

Source Status

Device	Status	Comments
Source	Tuning continues	Sparking at 35 keV continues

LEBT Status

Device	Status	Comments
New slide	being designed	Expect to have by mid March 2012
Einzel lens testing	Successful!	
Correctors	Last set of spare correctors done.	Here this week

Emittance Probes at end of LEBT

Using nominal settings for RFQ transport

Note that beam is clearly truncated in both planes! Therefore, emittance calculations are too small, (0.8 pi mm mrad, 1 sigma normalized)
Beam is at 35 keV, 60 mA.

40 mA beam current, 24 keV extraction

Emittances are assymetric! Horz is 0.15 pi mm mrad 1 sigma normalized. Vert is 0.25 pi mm mrad 1 sigma normalized.

Einzel lens switches in test room

Chopping demonstration

~1 kV is left behind when the chopper is "off". Better focusing. The above was done at 150 kW, bunching not optimum

Rise time from the best data sets that I can guess at the first bunch show that it is < 100 ns.

MEBT Status

Device	Status	Comments
MEBT Stand	Being designed	
		More pitch and yaw engineering. Still
Quad doublets	Being paired and tested	on 1 st doublet. (07 Feb)
Buncher	low power conditioning complete	

Are we buying PA for buncher? lon pump, controller gauging status?

Buncher readied for low power conditioning

Vacuum Pressure during conditioning

70W CW conditioning.

Spikes from ion pump ps?

RFQ Status

Device	Status	Comments
PLL work	Continues	
1000 L/s turbo failed	Overheated (17 Feb)	2-4 weeks for refurbishment

Scorch Marks on nearly every vane tip

Notice that the top surfaces are clean.

See next few slides

Zooming in

Zooming in on the scorch marks visible on from the top.

Zooming in on the bottom side of the same vane:

There are scorch marks here but they are silver and not black.

Zooming in

Zooming in to rods visible on the top but do **not** have scorch marks

However, on the bottom side, the scorch marks are visible.

Pictorial Summary

Discolouration of the Tuning Plates

Silver discolouration of the tuning plates and some dark marks on edges of the silver region.

Crack in solder joint

Manufacturing defect or localised RF heating caused this.

Test area, test stand and instrumentation

Device	Status	Comments
emittance pr	obes	Check to see if horz and vert probes
can	swapped arms	give the same results
wires	waiting to be surveyed	Needs fiducials.

Dipole Magnet for Spectrometer

Controls

Controls

Safety